Tetrahedron Letters No. 48, pp 4771 - 4774. © Pergamon Press Ltd. 1978. Printed in Great Britain.

SYNTHESIS AND THERMAL DECARBONYLATION OF ENDO-6,7-BENZOTRICYCLO-[3.2.1.0^{2,4}]OCTEN-8-ONE

Merle A. Battiste* and Melean Visnick Department of Chemistry, University of Florida Gainesville, Florida 32611

The first definitive evidence for the marked stereoelectronic effect exerted by a cyclopropane ring in thermal chelotropic reactions was reported from this laboratory in 1967.¹ endo-Tricyclo[3.2.1.0^{2,4}]octen-8-one (1) was observed to thermally extrude carbon monoxide with surprising ease compared to the corresponding exo-isomer 2 which did not differ materially in reactivity from 7-norbornenone (3).² Subsequent kinetic investigation³ established the 1/2 (or 1/3) rate factor to be ca. 10⁶. It was also noted¹ that the exo-benzotricyclooctenone (4) underwent decarbonylation only with great difficulty (70% reaction after 1 hr. at 400°).^{1,4} These observations were rationalized on the basis of the orbital topography of C_2-C_4 bond which is appropriate for stabilization of the decarbonylation transition state for ketone 1, but not for the exo cases 2 and 4.

In subsequent years other examples of cyclopropyl assisted extrusion reactions have been reported, most notably, the tricyclic azo compounds 5^5 and 6^6 . Compared to their respective model systems 7 and 8 nitrogen extrusion from 5 and 6 is remarkably facile exhibiting rate factors of 10^{11} $(5/7)^5$ and 10^{17} (6/8).⁶ The magnitude of the rate enhancements observed for 5 and 6 was surprising at first considering the more modest (10^6) rate enhancement for ketone 1. The nitrogen extrusion reaction would appear to provide a more sensitive measure of cyclopropyl assistance than carbonyl extrusion, however the azo systems are saturated while ketones 1-3 contain a m-center. It is possible, then, that the double bond in 1 exerts a leveling effect on the extent of cyclopropyl participation in decarbonylation. To test this

4771

suggestion we have prepared endo-6,7-benzotricyclo $[3.2.1.0^{2,4}]$ octen-8-one (9) and measured its rate of thermal decarbonylation for comparison with the corresponding exo ketone 4.

Synthetic entry into the <u>endo</u>-benzotricyclo[3.2.1.0^{3,4}]octene skeleton has previously been achieved for the parent hydrocarbon only, and then in very low yields from cuprous halidediazomethane cyclopropanation of benzonorbornadiene (<u>exo/endo</u> ratio 10-20).^{7,8} Our synthetic route to 9 is outlined in Chart I. The starting material for this synthesis is the endo adduct of 6,6-dimethylfulvene and cyclopropene.⁹ Reaction of this adduct with α -pyrone in refluxing benzene afforded hydrocarbon 10¹⁰ in 70% yield.

Chart I

The dihydroaromatic 10 was surprisingly resistant to direct aromatization attempts using DDQ, chloranil, o-chloranil, sulfur, and palladium-on-charcoal. Decomposition and/or recovery of starting material was observed for all attempts with exception of the tetrachlorobenzoquinone reactions in which crystalline (4+2) cycloadducts were obtained. The precise stereochemistry of both of these adducts has not been rigorously established, but the o-chloranil adduct 11, obtained in quantitative yield, clearly has the 1,4-dioxene structure shown.¹¹

Despite the failure of the dehydrogenation attempts adduct $\underset{\sim}{11}$ proved to be a useful precursor of the desired hydrocarbon 12 by virtue of the labile allylic aryl ether grouping. Thus treatment of 11 with excess potassium tert-butoxide in refluxing benzene afforded 12^{10} in 60% yield. The stereochemistry of 12 was confirmed by the exceptionally high field position of the <u>endo-C-3</u> proton which appeared as a sharply defined pentet at δ -0.70. The conversion of 10 into 12 via adduct 11 therefore constitutes a novel alternative to dehydrogenations utilizing highpotential quinones.

Ozonization of 12 in ethyl acetate at -78°C followed by quenching with excess dimethyl sulfide at -50° to -60°C afforded, after workup and alumina chromatography, a 60% yield of ketone 9,¹⁰ m.p. 44-45°. Ketone 9 is reasonably stable towards decarbonylation having a half-life of 5-6 hrs. at 95°. The kinetic parameters for thermal decarbonylation of 9 are given in Table I. Compared to ketone 1 and its saturated analog 13, the annelated ketone (9) has intermediate activity. The reactivity series 1:9:13 provides a useful quantitative demonstration of the annelation effect in a chelotropic reaction. Finally a comparison of the rate of decarbonyl-tion of 9 with that estimated for the corresponding exo ketone 4 (ca. 3.5 x 10⁻⁴ sec⁻¹ at 400°;

Table I. Kinetic Parameters for Thermal Decarbonylation of endo-6,7-Benzotricyclo[3.2.1.0^{2,4}]octen-8-one (9) in Benzene-d^a₆

т°,С	10^{5} k (sec ⁻¹)	∆G [‡] (kcal/mol)	$\Delta H^{\ddagger}(kcal/mol)$	∆s [‡] (e.u.)
95.4	3.29 <u>+</u> 0.05	29.28		
100.4	6.16 <u>+</u> 0.03	29.22	32.0	7.3
106.1	11.6 ± 0.2	29.19		

^aKinetic points were obtained by nmr integration of the well separated and decreasing bridgehead proton multiplet of <u>9</u> against the increasing methylene triplet of 3,4-benztropilidene. Use of an internal standard established that the formation of 3,4-benztropilidene from <u>9</u> was essentially quantitative.

4773

 $\Delta G^{\ddagger = 51 \text{ kcal/mol}}$ leads to a 9/4 rate factor of about 10¹⁵ which is well within the range of endo-cyclopropyl acceleration reported for azo compounds 5 and 6. The true magnitude of cyclo-propyl assistance to carbon monoxide extrusion has thus emerged in the reactivity of ketone 9 while it is partially masked by the double bond in 1. The nature of this leveling effect in 1 apparently has its origin in the maximum allowed accumulation of bonding at the original C-1, C-5 bridgehead carbons.

We thank the National Science foundation for partial support.

References and Footnotes

- B. Halton, M. A. Battiste, R. Rehberg, C. L. Deyrup, and M. E. Brennan, <u>J. Am. Chem. Soc</u>., 89, 5964 (1967).
- A. Diaz and S. Winstein, unpublished results communicated July, 1969; see also M. Sakai, <u>Tetrahedron Lett.</u>, 2297 (1973) and ref. 3a.
- (a) S. C. Clarke and B. L. Johnson, <u>Tetrahedron</u>, 27, 3555 (1971); (b) M. A. Battiste and R. Edelman, unpublished results.
- 4. M. E. Brennan, Ph.D. Dissertation, University of Florida, April, 1967.
- 5. E. L. Allred, J. C. Hinshaw, and A. L. Johnson, J. Am. Chem. Soc., 91, 3382 (1969).
- 6. E. L. Allred, and J. C. Hinshaw, Chem. Commun., 1021 (1969).
- 7. M. A. Battiste and M. E. Brennan, <u>Tetrahedron Lett</u>., 5857 (1966); cf. ref. 4 for details on glc ratio of endo:exo ratio from cyclopropanation reaction.
- 8. R. C. Hahn and M. W. Galley, J. Org. Chem., 41, 2006 (1976).
- 9. H. Tanida, T. Yano, R. Muneyuki, J. Am. Chem. Soc., 91, 2408 (1969).
- 10. Correct elemental analyses were obtained for all new compounds. If not otherwise mentioned nmr, mass, and infrared spectra were in accord with assigned structures.
- 11. (a) Although tetrahalogen o-quinones are known to function as carbodienes as well as oxadienes^{11b} it is interesting to note that no 1,2-diketone adduct was detected in the reaction of 10 with o-chloranil. (b) For a review see G. Pfundt and G. O. Schenk in "1,4-Cycloaddition Reactions", Ed. J. Hamer, Academic Press, Inc., New York, 1967, pp. 345-417.
- Cf. R. E. Keay and G. A. Hamilton, J. Am. Chem. Soc., 97, 6876 (1975), and references cited therein.

(Received in USA 27 September 1978)